

BigMLFlow

All the resources generated by the BigML API-first platform, including
models, are totally white-box, and they can be downloaded as JSON and used
to predict anywhere.

On the other hand, MLFlow offers tracking and deploying capacities for a
variety of ML models as long a flavor is created to define how to log, save
and load those models to be actionable.

The bigmlflow library implements this flavor. It uses
BigML’s Python bindings [https://bigml.readthedocs.io/en/latest/local_resources.html]
to integrate the BigML models with MLFlow’s tracking and deploying capacities.

Installation

This library is available as a PyPI package. To install it, just run:

pip install bigmlflow

The flavor is implemented in a single bigmlflow module

Flavor methods

The bigmlflow.bigml module provides an API for logging and loading BigML
models. This module exports BigML models with the following flavors:

	BigML (native) format
	This is the main flavor that can be loaded back into BigML.

	mlflow.pyfunc
	Produced for use by generic pyfunc-based deployment tools and batch inference.

	
bigmlflow.bigml.get_default_conda_env()

	
	Returns

	The default Conda environment for MLflow Models produced by calls to
save_model() and log_model().

	
bigmlflow.bigml.get_default_pip_requirements()

	
	Returns

	A list of default pip requirements for MLflow Models produced by this flavor.
Calls to save_model() and log_model() produce a pip environment
that, at minimum, contains these requirements.

	
bigmlflow.bigml.load_model(model_uri, dst_path=None)

	Load a BigML model from a local file (if run_id is None) or a run.

	Parameters

	
	model_uri – The location, in URI format, of the MLflow model. For example:

	/Users/me/path/to/local/model

	relative/path/to/local/model

	s3://my_bucket/path/to/model

	runs:/<mlflow_run_id>/run-relative/path/to/model

	models:/<model_name>/<model_version>

	models:/<model_name>/<stage>

For more information about supported URI schemes, see
Referencing Artifacts [https://www.mlflow.org/docs/latest/concepts.html#artifact-locations].

	dst_path – The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.

	Returns

	A SupervisedModel model object [https://bigml.readthedocs.io/en/latest/local_resources.html#local-supervised-model].

	
bigmlflow.bigml.log_model(bigml_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix] = None, pip_requirements=None, extra_pip_requirements=None, **kwargs)

	Log a BigML model as an MLflow artifact for the current run.

	Parameters

	
	bigml_model – BigML model to be saved.

	artifact_path – Run-relative artifact path.

	conda_env – Either a dictionary representation of a Conda environment or the path to a conda environment yaml
file. If provided, this describes the environment this model should be run in. At minimum, it
should specify the dependencies contained in get_default_conda_env(). If None, a conda
environment with pip requirements inferred by mlflow.models.infer_pip_requirements() is added
to the model. If the requirement inference fails, it falls back to using
get_default_pip_requirements(). pip requirements from conda_env are written to a pip
requirements.txt file and the full conda environment is written to conda.yaml.
The following is an example dictionary representation of a conda environment:

{
 "name": "mlflow-env",
 "channels": ["conda-forge"],
 "dependencies": [
 "python=3.7.0",
 {
 "pip": [
 "bigml==x.y.z"
],
 },
],
}

	code_paths – A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are prepended to the system
path when the model is loaded.

	registered_model_name – If given, create a model version under
registered_model_name, also creating a registered model if one
with the given name does not exist.

	signature – ModelSignature
describes model input and output Schema.
The model signature can be inferred
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:

from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)

	input_example – Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.

	pip_requirements – Either an iterable of pip requirement strings
(e.g. ["bigml", "-r requirements.txt", "-c constraints.txt"]) or the string path to
a pip requirements file on the local filesystem (e.g. "requirements.txt"). If provided, this
describes the environment this model should be run in. If None, a default list of requirements
is inferred by mlflow.models.infer_pip_requirements() from the current software environment.
If the requirement inference fails, it falls back to using get_default_pip_requirements().
Both requirements and constraints are automatically parsed and written to requirements.txt and
constraints.txt files, respectively, and stored as part of the model. Requirements are also
written to the pip section of the model’s conda environment (conda.yaml) file.

	extra_pip_requirements – Either an iterable of pip requirement strings
(e.g. ["pandas", "-r requirements.txt", "-c constraints.txt"]) or the string path to
a pip requirements file on the local filesystem (e.g. "requirements.txt"). If provided, this
describes additional pip requirements that are appended to a default set of pip requirements
generated automatically based on the user’s current software environment. Both requirements and
constraints are automatically parsed and written to requirements.txt and constraints.txt
files, respectively, and stored as part of the model. Requirements are also written to the pip
section of the model’s conda environment (conda.yaml) file.

Warning

The following arguments can’t be specified at the same time:

	conda_env

	pip_requirements

	extra_pip_requirements

This example demonstrates how to specify pip requirements using
pip_requirements and extra_pip_requirements.

	kwargs – kwargs to pass to bigml_model save model method, if any.

	Returns

	A ModelInfo instance that contains the
metadata of the logged model.

	
bigmlflow.bigml.save_model(bigml_model, path, conda_env=None, code_paths=None, mlflow_model=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix] = None, pip_requirements=None, extra_pip_requirements=None)

	Save an BigML model to a path on the local file system.

	Parameters

	
	bigml_model – BigML model to be saved.

	path – Local path where the model is to be saved.

	conda_env – Either a dictionary representation of a Conda environment or the path to a conda environment yaml
file. If provided, this describes the environment this model should be run in. At minimum, it
should specify the dependencies contained in get_default_conda_env(). If None, a conda
environment with pip requirements inferred by mlflow.models.infer_pip_requirements() is added
to the model. If the requirement inference fails, it falls back to using
get_default_pip_requirements(). pip requirements from conda_env are written to a pip
requirements.txt file and the full conda environment is written to conda.yaml.
The following is an example dictionary representation of a conda environment:

{
 "name": "mlflow-env",
 "channels": ["conda-forge"],
 "dependencies": [
 "python=3.7.0",
 {
 "pip": [
 "bigml==x.y.z"
],
 },
],
}

	code_paths – A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are prepended to the system
path when the model is loaded.

	signature – ModelSignature
describes model input and output Schema.
The model signature can be inferred
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:

from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)

	input_example – Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.

	mlflow_model – mlflow.models.Model this flavor is being added to.

BigMLFlow usage

Some examples [https://github.com/bigmlcom/bigmlflow/tree/master/examples]
are available in the repository to illustrate how you can use MLFlow
to generate BigML models, log evaluation metrics and deploy the different
Supervised Models available in the BigML platform.

Tests

The tests directory contains some tests for the logging, saving and loading
of models.
We use Pytest to run the tests, so you can install it separately

pip install pytest

or as an extra for development and testing purposes

pip install -e .[tests]

How to Contribute

Please follow the next steps:

	Fork the project on github.com.

	Create a new branch.

	Commit changes to the new branch.

	Send a pull request [https://github.com/bigmlcom/bigmlflow/pulls].

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bigmlflow	

 	
 	
 bigmlflow.bigml	

Index

 B
 | G
 | L
 | M
 | S

B

 	
 	
 bigmlflow.bigml

 	module

G

 	
 	get_default_conda_env() (in module bigmlflow.bigml)

 	
 	get_default_pip_requirements() (in module bigmlflow.bigml)

L

 	
 	load_model() (in module bigmlflow.bigml)

 	
 	log_model() (in module bigmlflow.bigml)

M

 	
 	
 module

 	bigmlflow.bigml

S

 	
 	save_model() (in module bigmlflow.bigml)

 nav.xhtml

 Table of Contents

 		
 BigMLFlow

_static/plus.png

_static/file.png

_static/minus.png

