
BigML Documentation
Release 1.0.2

The BigML Team

Nov 29, 2022

CONTENTS

1 Installation 3

2 Flavor methods 5

3 BigMLFlow usage 9

4 Tests 11

5 How to Contribute 13

Python Module Index 15

Index 17

i

ii

BigML Documentation, Release 1.0.2

All the resources generated by the BigML API-first platform, including models, are totally white-box, and they can be
downloaded as JSON and used to predict anywhere.

On the other hand, MLFlow offers tracking and deploying capacities for a variety of ML models as long a flavor is
created to define how to log, save and load those models to be actionable.

The bigmlflow library implements this flavor. It uses BigML’s Python bindings to integrate the BigML models with
MLFlow’s tracking and deploying capacities.

CONTENTS 1

https://bigml.readthedocs.io/en/latest/local_resources.html

BigML Documentation, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

This library is available as a PyPI package. To install it, just run:

pip install bigmlflow

The flavor is implemented in a single bigmlflow module

3

BigML Documentation, Release 1.0.2

4 Chapter 1. Installation

CHAPTER

TWO

FLAVOR METHODS

The bigmlflow.bigmlmodule provides an API for logging and loading BigML models. This module exports BigML
models with the following flavors:

BigML (native) format This is the main flavor that can be loaded back into BigML.

mlflow.pyfunc Produced for use by generic pyfunc-based deployment tools and batch inference.

bigmlflow.bigml.get_default_conda_env()

Returns The default Conda environment for MLflow Models produced by calls to save_model()
and log_model().

bigmlflow.bigml.get_default_pip_requirements()

Returns A list of default pip requirements for MLflow Models produced by this flavor. Calls to
save_model() and log_model() produce a pip environment that, at minimum, contains these
requirements.

bigmlflow.bigml.load_model(model_uri, dst_path=None)
Load a BigML model from a local file (if run_id is None) or a run.

Parameters

• model_uri – The location, in URI format, of the MLflow model. For example:

– /Users/me/path/to/local/model

– relative/path/to/local/model

– s3://my_bucket/path/to/model

– runs:/<mlflow_run_id>/run-relative/path/to/model

– models:/<model_name>/<model_version>

– models:/<model_name>/<stage>

For more information about supported URI schemes, see Referencing Artifacts.

• dst_path – The local filesystem path to which to download the model artifact. This direc-
tory must already exist. If unspecified, a local output path will be created.

Returns A SupervisedModel model object.

5

https://www.mlflow.org/docs/latest/concepts.html#artifact-locations
https://bigml.readthedocs.io/en/latest/local_resources.html#local-supervised-model

BigML Documentation, Release 1.0.2

bigmlflow.bigml.log_model(bigml_model, artifact_path, conda_env=None, code_paths=None,
registered_model_name=None, signature:
mlflow.models.signature.ModelSignature = None, input_example:
Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix,
csc_matrix] = None, pip_requirements=None, extra_pip_requirements=None,
**kwargs)

Log a BigML model as an MLflow artifact for the current run.

Parameters

• bigml_model – BigML model to be saved.

• artifact_path – Run-relative artifact path.

• conda_env – Either a dictionary representation of a Conda environment or the path
to a conda environment yaml file. If provided, this describes the environment this
model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env(). If None, a conda environment with pip requirements in-
ferred by mlflow.models.infer_pip_requirements() is added to the model. If the
requirement inference fails, it falls back to using get_default_pip_requirements().
pip requirements from conda_env are written to a pip requirements.txt file and the full
conda environment is written to conda.yaml. The following is an example dictionary rep-
resentation of a conda environment:

{
"name": "mlflow-env",
"channels": ["conda-forge"],
"dependencies": [

"python=3.7.0",
{

"pip": [
"bigml==x.y.z"

],
},

],
}

• code_paths – A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are prepended to the system path when the model
is loaded.

• registered_model_name – If given, create a model version under
registered_model_name, also creating a registered model if one with the given
name does not exist.

• signature – ModelSignature describes model input and output Schema. The model sig-
nature can be inferred from datasets with valid model input (e.g. the training dataset with
target column omitted) and valid model output (e.g. model predictions generated on the
training dataset), for example:

from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)

• input_example – Input example provides one or several instances of valid model input.
The example can be used as a hint of what data to feed the model. The given example will be

6 Chapter 2. Flavor methods

BigML Documentation, Release 1.0.2

converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented
format. Bytes are base64-encoded.

• pip_requirements – Either an iterable of pip requirement strings (e.g. ["bigml", "-r
requirements.txt", "-c constraints.txt"]) or the string path to a pip requirements
file on the local filesystem (e.g. "requirements.txt"). If provided, this describes the en-
vironment this model should be run in. If None, a default list of requirements is inferred by
mlflow.models.infer_pip_requirements() from the current software environment. If
the requirement inference fails, it falls back to using get_default_pip_requirements().
Both requirements and constraints are automatically parsed and written to requirements.
txt and constraints.txt files, respectively, and stored as part of the model. Require-
ments are also written to the pip section of the model’s conda environment (conda.yaml)
file.

• extra_pip_requirements – Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]) or the string path
to a pip requirements file on the local filesystem (e.g. "requirements.txt"). If provided,
this describes additional pip requirements that are appended to a default set of pip require-
ments generated automatically based on the user’s current software environment. Both re-
quirements and constraints are automatically parsed and written to requirements.txt and
constraints.txt files, respectively, and stored as part of the model. Requirements are
also written to the pip section of the model’s conda environment (conda.yaml) file.

Warning: The following arguments can’t be specified at the same time:

– conda_env

– pip_requirements

– extra_pip_requirements

This example demonstrates how to specify pip requirements using pip_requirements and
extra_pip_requirements.

• kwargs – kwargs to pass to bigml_model save model method, if any.

Returns A ModelInfo instance that contains the metadata of the logged model.

bigmlflow.bigml.save_model(bigml_model, path, conda_env=None, code_paths=None, mlflow_model=None,
signature: mlflow.models.signature.ModelSignature = None, input_example:
Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix,
csc_matrix] = None, pip_requirements=None, extra_pip_requirements=None)

Save an BigML model to a path on the local file system.

Parameters

• bigml_model – BigML model to be saved.

• path – Local path where the model is to be saved.

• conda_env – Either a dictionary representation of a Conda environment or the path
to a conda environment yaml file. If provided, this describes the environment this
model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env(). If None, a conda environment with pip requirements in-
ferred by mlflow.models.infer_pip_requirements() is added to the model. If the
requirement inference fails, it falls back to using get_default_pip_requirements().
pip requirements from conda_env are written to a pip requirements.txt file and the full
conda environment is written to conda.yaml. The following is an example dictionary rep-
resentation of a conda environment:

7

BigML Documentation, Release 1.0.2

{
"name": "mlflow-env",
"channels": ["conda-forge"],
"dependencies": [

"python=3.7.0",
{

"pip": [
"bigml==x.y.z"

],
},

],
}

• code_paths – A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are prepended to the system path when the model
is loaded.

• signature – ModelSignature describes model input and output Schema. The model sig-
nature can be inferred from datasets with valid model input (e.g. the training dataset with
target column omitted) and valid model output (e.g. model predictions generated on the
training dataset), for example:

from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)

• input_example – Input example provides one or several instances of valid model input.
The example can be used as a hint of what data to feed the model. The given example will be
converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented
format. Bytes are base64-encoded.

• mlflow_model – mlflow.models.Model this flavor is being added to.

8 Chapter 2. Flavor methods

CHAPTER

THREE

BIGMLFLOW USAGE

Some examples are available in the repository to illustrate how you can use MLFlow to generate BigML models, log
evaluation metrics and deploy the different Supervised Models available in the BigML platform.

9

https://github.com/bigmlcom/bigmlflow/tree/master/examples

BigML Documentation, Release 1.0.2

10 Chapter 3. BigMLFlow usage

CHAPTER

FOUR

TESTS

The tests directory contains some tests for the logging, saving and loading of models. We use Pytest to run the tests,
so you can install it separately

pip install pytest

or as an extra for development and testing purposes

pip install -e .[tests]

11

BigML Documentation, Release 1.0.2

12 Chapter 4. Tests

CHAPTER

FIVE

HOW TO CONTRIBUTE

Please follow the next steps:

1. Fork the project on github.com.

2. Create a new branch.

3. Commit changes to the new branch.

4. Send a pull request.

13

https://github.com/bigmlcom/bigmlflow/pulls

BigML Documentation, Release 1.0.2

14 Chapter 5. How to Contribute

PYTHON MODULE INDEX

b
bigmlflow.bigml, 5

15

BigML Documentation, Release 1.0.2

16 Python Module Index

INDEX

B
bigmlflow.bigml

module, 5

G
get_default_conda_env() (in module

bigmlflow.bigml), 5
get_default_pip_requirements() (in module

bigmlflow.bigml), 5

L
load_model() (in module bigmlflow.bigml), 5
log_model() (in module bigmlflow.bigml), 5

M
module

bigmlflow.bigml, 5

S
save_model() (in module bigmlflow.bigml), 7

17

	Installation
	Flavor methods
	BigMLFlow usage
	Tests
	How to Contribute
	Python Module Index
	Index

